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Abstract. A simple graph is said to be cordial if it admits

0-1 labeling that satisfies certain conditions. In this paper

we investigate necessary and sufficient conditions for cordial

labeling of the corona product between paths and fourth power

of paths be cordial.
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1. Introduction

Let G be a graph with p vertices and q edges. All graphs considered here

are simple, finite, connected and undirected. A labeling of a graph G is a

process of allocating numbers or labels to the nodes of G or lines of G or both

through mathematical functions [2]. There are several types of labeling and

a complete survey of graph labeling is available in [6]. Graph theory has a

good development in the graph labeling and has a broad range of applications,

some of which were reported in the work of Yegnanaryanan and Vaidhyanathan
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[9]. Cordial labeling is a weaker version of graceful labeling and harmonious

labeling introduced by Cahit in [3]. Extensions of this labeling include mean

cordial labeling, H1- and H2-cordial labeling of some graphs [7]. In 1990, Cahit

[4], proved the following: each tree is cordial; an Euerlian graph is not cordial

if its size is congruent to 2(mod 4) ; a complete graph Kn is cordial if and

only if n ≤ 3 and a complete bipartite graph Kn,m is cordial for all positive

integers n and m. Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The

corona G1

⊙
G2 of two graphs G1 (with n1 vertices , m1 edges) and G2 (with

n2 vertices , m2 edges) is defined as the graph obtained by taking one copy of

G1 and copies of G2 , and then joining the ith vertex of G1 with an edge to

every vertex in the ith copy of G2 . It is easy to see that the corona G1

⊙
G2

that has n1 + n1n2 vertices and m1 + n1m2 + n1n2 edges. We will give a brief

summary of definitions which are useful for the present investigations.

Definition 1.1. A mapping f :V → {0, 1} is called binary vertex labeling of G

and f(v) is called the label of the vertex v of G under f. For any edge e=uv ,

the induced edge labeling f∗:E(G) → {0, 1} is given by f∗(e) = |f(u)− f(v)|,

where u, v ∈ V . Let vf (i) be the numbers of vertices of G labeled i under f ,

and ef (i) be the numbers of edges of G labeled i under f∗ where i ∈ {0, 1}.

Definition 1.2. A binary vertex labeling of a graph G is called cordial if

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. A graph G is called cordial if it

admits a cordial labeling.

Definition 1.3. The fourth power of a cycles Cn denoted by C4
n , is Cn

⋃
J ,

where J is the set of all edges of the form edges vivj such that 2 ≤ d(vivj) ≤ 4,

where d(vivj) is the shortest distance from vi to vj .

2. Terminology and notation

A path with m vertices and m− 1 edges, denoted by Pm, and its fourth

power P 4
n has n vertices and 4n − 10 edges. We let L4r denote the labeling

0011 0011...0011 ”r-times”, Let L′

4r denote the labeling 0110 0110...0110 ”r-

times”. The labeling 1100 1100...1100 ”r-times” and labeling 1001 1001...1001

”r-times” are written S4r and S′

4r. Let M2r denote the labeling 0101...01, zero-

one ”rtimes”. We let M ′

2r denote the labeling 1010...10. Regularly, we modify

the labeling M2r or M ′

2r by adding symbols at one end or the other (or both).

Also, L4r (or L′

4r ) with extra labeling from right or left (or both sides). Let

us use αi to indicate the labeling of P 4
n that is adjacent to a vertex of Pm that

is labeled i, i = 0, 1 of the corona Pm

⊙
P 4
n . Use yi , bi (i = 0, 1) to denote

the number of vertices and edges, respectively for α0 of P 4
n , and consider y′i,

b′i (i = 0, 1) to denote the number of vertices and edges, respectively for α1

of P 4
n . Sometimes, we use the notation α∗0 for the labeling of P 4

n which is

only associated to the last vertex labeled 0 of Pm. In this case, we will use the
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notation b
′
∗

0 , b
′
∗

1 , y
′
∗

0 and y
′
∗

1 instead of b′0, b
′

1, y
′

0 and y′1, respectively. Similarly,

the notation α∗1 may be used for the labeling of P 4
n that is associated only to

the last vertex labeled 1 of Pm. It is easy to verify that v0 = x0 + x0y0 + x1y
′

0,

v1 = x1+x0y1+x1y
′

1, e0 = a0+x0b0+x1b
′

0+x0y0+x1y
′

1 and e1 = a1+x0b1+

x1b
′

1+x0(x0y1)+x1y
′

0. Thus, v0−v1 = (x0−x1)+x0(y0−y1)+x1(y
′

0−y′1) and

e0−e1 = (a0−a1)+x0(b0−b1)+x1(b
′

0−b′1)+x0(y0−y1)−x1(y
′

0−y′1). When it

comes to the proof, we only need to show that, for each specified combination

of labeling, |v0 − v1| ≤ 1 and |e0 − e1| ≤ 1.

3. Main results

In this section, we study cordial labeling of the corona product between

paths and fourth power of paths and show that all Pm

⊙
P 4
n are cordial for all

integers m ≥ 1 when n ≥ 7, and for all integers m > 1 when n = 3.

Lemma 3.1. The corona Pm

⊙
P 4
3 is cordial if and only if m 6= 1.

Proof. Since P 4
3 = C3, Pm

⊙
P 4
3 is cordial [8]. �

Lemma 3.2. If n ≡ 0(mod 4), n ≥ 8, then Pm

⊙
P 4
n is cordial for all m ≥ 1.

Proof. Suppose that n = 4s, where s ≥ 2. The following cases will be examined.

Case 1.

Suppose that m = 1. Choose the labeling 0 for P1 and the labeling α0=

0L4s−4012 for P 4
4s. Therefore x0 = 1, x1 = 0, a0 = a1 = 0, y0 = y1 = 2s, b0 =

b1 = 8s−5 and obviously y′0 = y′1 = b′0 = b′1 = 0 . It follows that v0−v1 = 1 and

e0 − e1 = 0. Hence, P1

⊙
P 4
4s is cordial. As an example, Figure (1) illustrates

P1

⊙
P 4
8 .

0        0        0         1        1         0         1         1

0

Figure 1

Case 2.
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Suppose that m = 2. Choose the labeling 01 for P2. Take α0 to be 0L4s−4012
and α1 to be 12L

′

4s−402. Therefore x0 = x1 = 1, a0 = 0, a1 = 1, y0 = y1 =

2s, b0 = b1 = 8s − 5, y′0 = y′1 = 2s and b′0 = b′1 = 8s − 5. It follows that

v0 − v1 = 0 and e0 − e1 = −1. Hence, P2

⊙
P 4
4s is cordial.

Case 3.

Suppose that m = 3. Choose the labeling 001 for P3. Take α0 to be 0L4s−4012
and α1 to be 12L

′

4s−402. Therefore x0 = 2, x1 = 2, a0 = a1 = 1, y0 = y1 =

2s, b0 = b1 = 8s − 5, y′0 = y′1 = 2s and b′0 = b′1 = 8s − 5. It follows that

v0 − v1 = 1 and e0 − e1 = 0. Hence, P3

⊙
P 4
4s is cordial.

Case 4. m ≡ 0(mod 4).

Suppose that m = 4r, r ≥ 2. Choose the labeling L4r for P4r. Take α0 to

be 0L4s−4012 and α1 to be 12L
′

4s−402. Therefore x0 = x1 = 2r, a0 = 2r, a1 =

2r − 1, y0 = y1 = 2s, b0 = b1 = 8s − 5, y′0 = y′1 = 2s and b′0 = b′1 = 8s − 5. It

follows that v0 − v1 = 0 and e0 − e1 = 1. Hence, P4r

⊙
P 4
4s is cordial.

Case 5. m ≡ 1(mod 4).

Suppose that m = 4r + 1, r ≥ 1. Choose the labeling L4r0 for P4r+1. Take α0

to be 0L4s−4012 and α1 to be 12L
′

4s−402. Therefore x0 = 2r+ 1, x1 = 2r, a0 =

a1 = 2r, y0 = y1 = 2s, b0 = b1 = 8s − 5, y′0 = y′1 = 2s and b′0 = b′1 = 8s − 5. It

follows that v0 − v1 = 1 and e0 − e1 = 0. Hence, P4r+1

⊙
P 4
4s is cordial.

Case 6. m ≡ 2(mod 4).

Suppose that m = 4r + 2, r ≥ 1. Choose the labeling L4r01 for P4r+2. Take

α0 to be 0L4s−4012 and α1 to be 12L
′

4s−402. Therefore x0 = x1 = 2r+ 1, a0 =

2r, a1 = 2r+1, y0 = y1 = 2s, b0 = b1 = 8s−5, y′0 = y′1 = 2s and b′0 = b′1 = 8s−5.

It follows that v0 − v1 = 0 and e0 − e1 = −1. Hence, P4r+2

⊙
P 4
4s is cordial.

Case 7. m ≡ 3(mod 4).

Suppose that m = 4r + 3, r ≥ 1. Choose the labeling L4r001 for P4r+3. Take

α0 to be 0L4s−4012 and α1 to be 12L
′

4s−402. Therefore x0 = 2r + 2, x1 =

2r + 1, a0 = a1 = 2r + 1, y0 = y1 = 2s, b0 = b1 = 8s − 5, y′0 = y′1 = 2s and

b′0 = b′1 = 8s−5. It follows that v0−v1 = 1 and e0−e1 = 0. Hence, P4r+3

⊙
P 4
4s

is cordial. �

Lemma 3.3. If n ≡ 1(mod 4), then Pm

⊙
P 4
n is cordial for all m ≥ 1.

Proof. Suppose that n = 4s + 1, where s ≥ 2. The following cases will be

examined.

Case 1.

Suppose that m = 1. Choose the labeling 0 for P1 and the labeling α0=

12L
′

4s−4010 for P 4
4s+1. Therefore x0 = 1, x1 = 0, a0 = a1 = 0, y0 = 2s, y1 =

2s+ 1, b0 = b1 = 8s− 3 and obviously y′0 = y′1 = b′0 = b′1 = 0 . It follows that

v0 − v1 = 0 and e0 − e1 = −1. Hence, P1

⊙
P 4
4s+1 is cordial.

Case 2.

Suppose that m = 2. Choose the labeling 01 for P2. Take α0 to be 02L4s−4101

and α1 to be 12L
′

4s−4010. Therefore x0 = x1 = 1, a0 = 0, a1 = 1, y0 =
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2s+ 1, y1 = 2s, b0 = b1 = 8s− 3, y′0 = 2s+ 1, y′1 = 2s and b′0 = b′1 = 8s− 3. It

follows that v0 − v1 = 0 and e0 − e1 = 1. As an example, Figure (2) illustrates

P2

⊙
P 4
9 . Hence, P2

⊙
P 4
4s+1 is cordial.

0         0         0        0         1        1         1         0        1 

0

1        1         0         1        1         0         0        1         0

1

Figure 2

Case 3.

Suppose that m = 3. Choose the labeling 010 for P3. Take α0 (associated to

the first vertex labeled 0 in P3) to be 02L4s−4101, α1 to be 12L
′

4s−4010 and

α∗0 (associated to the last vertex labeled 0 in P3) to be 12L
′

4s−4010. Therefore

x0 = 2, x1 = 1, a0 = 0, a1 = 2, y0 = 2s + 1, y1 = 2s, b0 = b1 = 8s − 3, y′0 =

2s, y′1 = 2s+ 1, b′0 = b′1 = 8s− 3, y
′
∗

0 = 2s, y
′
∗

1 = 2s+ 1 and b
′
∗

0 = b
′
∗

1 = 8s− 3.

It follows that v0 − v1 = 0 and e0 − e1 = −1. Hence, P3

⊙
P 4
4s+1 is cordial.

Case 4. m ≡ 0(mod 4).

Suppose that m = 4r, r ≥ 1. Choose the labeling M4r for P4r. Take α0

to be 02L4s−4101 and α1 to be 12L
′

4s−4010. Therefore x0 = x1 = 2r, a0 =

0, a1 = 4r − 1, y0 = 2s + 1, y1 = 2s, b0 = b1 = 8s − 3, y′0 = 2s, y′1 = 2s + 1

and b′0 = b1 = 8s − 3. It follows that v0 − v1 = 0 and e0 − e1 = 1. Hence,

P4r

⊙
P 4
4s+1 is cordial.

Case 5. m ≡ 1(mod 4).

Suppose that m = 4r+1, r ≥ 1. Choose the labeling M4r0 for P4r+1. Take α0

to be 02L4s−4101, α1 to be 12L
′

4s−4010 and α∗0 (associated to the last vertex

labeled 0 in P4r+1) to be 12L
′

4s−4010. Therefore x0 = 2r + 1, x1 = 2r, a0 =

0, a1 = 4r, y0 = 2s+1, y1 = 2s, b0 = b1 = 8s− 3, y′0 = 2s, y′1 = 2s+1, b′0 = b′1 =

8s− 3, y
′
∗

0 = 2s, y
′
∗

1 = 2s+1 and b
′
∗

0 = b
′
∗

1 = 8s− 3. It follows that v0 − v1 = 0

and e0 − e1 = −1. Hence, P4r+1

⊙
P 4
4s+1 is cordial.

Case 6. m ≡ 2(mod 4).

Suppose that m = 4r+2, r ≥ 1. Choose the labeling M4r+2 for P4r+2. Take α0

to be 02L4s−4101 and α1 to be 12L
′

4s−4010. Therefore x0 = x1 = 2r+ 1, a0 =

0, a1 = 4r + 1, y0 = 2s + 1, y1 = 2s, b0 = b1 = 8s − 3, y′0 = 2s, y′1 = 2s + 1
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and b′0 = b′1 = 8s − 3. It follows that v0 − v1 = 0 and e0 − e1 = 1. Hence

P4r+2

⊙
P 4
4s+1 is cordial.

Case 7. m ≡ 3(mod 4).

Suppose that m = 4r + 3, r ≥ 1. Choose the labeling M4r+20 for P4r+3.

Take α0 to be 02L4s−4101, α1 to be 12L
′

4s−4010 and α∗0 (associated to the

last vertex labeled 0 in P4r+3 to be 12L
′

4s−4010. Therefore x0 = 2r + 2, x1 =

2r + 1, a0 = 0, a1 = 4r + 2, y0 = 2s+ 1, y1 = 2s, b0 = b1 = 8s− 3, y′0 = 2s, y′1 =

2s+1, b′0 = b′1 = 8s− 3, y
′
∗

0 = 2s, y
′
∗

1 = 2s+1 and b
′
∗

0 = b
′
∗

1 = 8s− 3. It follows

that v0 − v1 = 0 and e0 − e1 = −1. Hence, P4r+3

⊙
P 4
4s+1 is cordial. �

Lemma 3.4. If n ≡ 2(mod 4), then Pm

⊙
P 4
n is cordial for all m ≥ 1.

Proof. Suppose that n = 4s + 2, where s ≥ 2. The following cases will be

studied.

Case 1.

Suppose that m = 1. Choose the labeling 0 for P1 and the labeling α0=

0130S4s−40 for P 4
4s+2. Therefore x0 = 1, x1 = 0, a0 = a1 = 0, y0 = y1 =

2s + 1, b0 = b1 = 8s − 1 and obviously y′0 = y′1 = b′0 = b′1 = 0. It follows that

v0 − v1 = 1 and e0 − e1 = 0. Hence, P1

⊙
P 4
4s+2 is cordial.

Case 2.

Suppose that m = 2. Choose the labeling 01 for P2. Take α0 to be 0130S4s−40

and α1 to be 0L4s−40130. Therefore x0 = x1 = 1, a0 = 0, a1 = 1, y0 = y1 =

2s+ 1, b0 = b1 = 8s− 1, y′0 = y′1 = 2s+ 1 and b′0 = b′1 = 8s− 1. It follows that

v0 − v1 = 0 and e0 − e1 = −1. Hence, P2

⊙
P 4
4s+2 is cordial.

Case 3.

Suppose that m = 3. Choose the labeling 001 for P3. Take α0 to be 0130S4s−40

and α1 to be 0L4s−40130. Therefore x0 = 2, x1 = 1, a0 = a1 = 1, y0 = y1 =

2s+ 1, b0 = b1 = 8s− 1, y′0 = y′1 = 2s+ 1 and b′0 = b′1 = 8s− 1. It follows that

v0 − v1 = 1 and e0 − e1 = 0. As an example, Figure (3) illustrates P3

⊙
P 4
10.

Hence, P3

⊙
P 4
4s+2 is cordial.

Case 4. m ≡ 0(mod 4).

Suppose that m = 4r, r ≥ 1. Choose the labeling L4r for P4r. Take α0 to be

0130S4s−40 and α1 to be 0L4s−40130. Therefore x0 = x1 = 2r, a0 = 2r, a1 =

2r−1, y0 = y1 = 2s+1, b0 = b1 = 8s−1, y′0 = y′1 = 2s+1 and b′0 = b1 = 8s−1.

It follows that v0 − v1 = 0 and e0 − e1 = 1. Hence, P4r

⊙
P 4
4s+2 is cordial.

Case 5. m ≡ 1(mod 4).

Suppose thatm = 4r+1, r ≥ 1. Choose the labeling L4r0 for P4r+1. Take α0 to

be 0130S4s−40, α1 to be 0L4s−40130. Therefore x0 = 2r+1, x1 = 2r, a0 = a1 =

2r, y0 = y1 = 2s + 1, b0 = b1 = 8s − 1, y′0 = y′1 = 2s + 1 and b′0 = b′1 = 8s − 1.

It follows that v0 − v1 = 1 and e0 − e1 = 0. Hence, P4r+1

⊙
P 4
4s+2 is cordial.

Case 6. m ≡ 2(mod 4).

Suppose that m = 4r + 2, r ≥ 1. Choose the labeling L4r01 for P4r+2 and
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0        1         1         1        0         1        1         0        0         0

0

0        0        0         1        1        0        1       1         1         0

1

0        1         1         1        0         1        1         0        0         0

0

Figure 3

take α0 to be 0130S4s−40 and α1 to be 0L4s−40130. Therefore x0 = x1 =

2r+1, a0 = 2r, a1 = 2r+1, y0 = y1 = 2s+1, b0 = b1 = 8s− 1, y′0 = y′1 = 2s+1

and b′0 = b′1 = 8s − 1. It follows that v0 − v1 = 0 and e0 − e1 = −1. Hence,

P4r+2

⊙
P 4
4s+2 is cordial.

Case 7. m ≡ 3(mod 4).

Suppose that m = 4r + 3, r ≥ 1. Choose the labeling L4r001 for P4r+3. Take

α0 to be 0130S4s−40 and α1 to be 0L4s−40130. Therefore x0 = 2r + 2, x1 =

2r + 1, a0 = a1 = 2r + 1, y0 = y1 = 2s + 1, b0 = b1 = 8s − 1, y′0 = y′1 = 2s + 1

and b′0 = b′1 = 8s − 1. It follows that v0 − v1 = 1 and e0 − e1 = 0. Hence,

P4r+3

⊙
P 4
4s+2 is cordial. �

Lemma 3.5. If n ≡ 3(mod 4), then Pm

⊙
P 4
n is cordial for all m ≥ 1.

Proof. Suppose that n = 4s + 3, where s ≥ 1. The following cases will be

checked.

Case 1.

Suppose that m = 1. Choose the labeling 0 for P1 and the labeling α0= 12S4s0

for P 4
4s+3. Therefore x0 = 1, x1 = 0, a0 = a1 = 0, y0 = 2s+ 1, y1 = 2s+ 2, b0 =

b1 = 8s + 1 and obviously y′0 = y′1 = b′0 = b′1 = 0. It follows that v0 − v1 = 0

and e0 − e1 = −1. Hence, P1

⊙
P 4
4s+3 is cordial.

Case 2.

Suppose that m = 2. Choose the labeling 01 for P2. Take α0 to be 021L4s

and α1 to be 12S4s0. Therefore x0 = x1 = 1, a0 = 0, a1 = 1, y0 = 2s + 2, y1 =

2s+1, b0 = b1 = 8s+1, y′0 = 2s+1, y′1 = 2s+2 and b′0 = b′1 = 8s+1. It follows

that v0 − v1 = 0 and e0 − e1 = 1. Hence, P2

⊙
P 4
4s+3 is cordial.

Case 3.

Suppose that m = 3. Choose the labeling 010 for P3. Take α0 to be 021L4s,

α1 to be 12S4s0 and α∗0 (associated to the last vertex labeled 0 in P3) to be

12S4s0. Therefore x0 = 2, x1 = 1, a0 = 0, a1 = 2, y0 = 2s+ 2, y1 = 2s+ 1, b0 =

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

10
7 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

24
-0

5-
07

 ]
 

                               7 / 9

http://dx.doi.org/10.61186/ijmsi.18.2.107
http://ijmsi.com/article-1-1581-fa.html


114 S. Nada, A. Elrokh, A. Elrayes, A. Rabie

b1 = 8s+1, y′0 = 2s+1, y′1 = 2s+2, b′0 = b′1 = 8s+1, y
′
∗

0 = 2s+1, y
′
∗

1 = 2s+2

andb
′
∗

0 = b
′
∗

1 = 8s + 1. It follows that v0 − v1 = 0 and e0 − e1 = −1. Hence,

P3

⊙
P 4
4s+3 is cordial.

Case 4. m ≡ 0(mod 4).

Suppose that m = 4r, r ≥ 1. Choose the labeling M4r for P4r. Take α0 to be

021L4s and α1 to be 12S4s0. Therefore x0 = x1 = 2r, a0 = 0, a1 = 4r − 1, y0 =

2s+2, y1 = 2s+1, b0 = b1 = 8s+1, y′0 = 2s+1, y′1 = 2s+2 and b′0 = b′1 = 8s+1.

It follows that v0−v1 = 0 and e0−e1 = 1. As an example, Figure (4) illustrates

P4

⊙
P 4
7 . Hence, P4r

⊙
P 4
4s+3 is cordial.

Case 5. m ≡ 1(mod 4).

1

  1      1       1       1      0      0        0

0

 0      0        1       0      0      1        1

1

  1      1       1       1      0      0        0

0

 0      0        1       0      0      1        1

Figure 4

Suppose that m = 4r+1, r ≥ 1. Choose the labeling M4r0 for P4r+1. Take α0

to be 021L4s, α1 to be 12S4s0 and α∗0 (associated to the last vertex labeled 0

in P4r+1) to be 12S4s0. Therefore x0 = 2r + 1, x1 = 2r, a0 = 0, a1 = 4r, y0 =

2s + 2, y1 = 2s + 1, b0 = b1 = 8s + 1, y′0 = 2s + 1, y′1 = 2s + 2, b′0 = b′1 =

8s + 1, y
′
∗

0 = 2s + 1, y
′
∗

1 = 2s + 2 and b
′
∗

0 = b
′
∗

1 = 8s + 1. It follows that

v0 − v1 = 0 and e0 − e1 = −1. Hence, P4r+1

⊙
P 4
4s+3 is cordial.

Case 6. m ≡ 2(mod 4).

Suppose that m = 4r + 2, r ≥ 1. Choose the labeling M4r+2 for P4r+2. Take

α0 to be 021L4s and α1 to be 12S4s0. Therefore x0 = x1 = 2r+1, a0 = 0, a1 =

4r + 1, y0 = 2s + 2, y1 = 2s + 1, b0 = b1 = 8s + 1, y′0 = 2s + 1, y′1 = 2s + 2

and b′0 = b′1 = 8s + 1. It follows that v0 − v1 = 0 and e0 − e1 = 1. Hence,

P4r+2

⊙
P 4
4s+3 is cordial.

Case 7. m ≡ 3(mod 4).

Suppose that m = 4r + 3, r ≥ 1. Choose the labeling M4r+20 for P4r+3. Take

α0 to be 021L4s, α1 to be 12S4s0 and α∗0 (associated to the last vertex labeled

0 in P4r+3) to be 12S4s0. Therefore x0 = 2r + 2, x1 = 2r + 1, a0 = 0, a1 =

4r + 2, y0 = 2s+ 2, y1 = 2s+ 1, b0 = b1 = 8s+ 1, y′0 = 2s+ 1, y′1 = 2s+ 2, b′0 =
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b′1 = 8s + 1, y
′
∗

0 = 2s + 1, y
′
∗

1 = 2s + 2 and b
′
∗

0 = b
′
∗

1 = 8s + 1. It follows that

v0 − v1 = 0 and e0 − e1 = −1. Hence, P4r+3

⊙
P 4
4s+3 is cordial.

As a consequence of all lemmas mentioned above we conclude that the corona

product between paths and fourth power of paths is cordial for allm, n ≥ 7. �

Conclusion

In this paper we test the cordiality of the corona product between paths and

fourth power of paths. We have shown that all Pm

⊙
P 4
n are cordial for all

integers m ≥ 1 when n ≥ 7, and for all integers m > 1 when n = 3.
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